
SED 1386 Transcript

EPISODE 1386

[INTRODUCTION]

[00:00:00] KP: When creating a website, there's no shortage of choices for how to do it.
Builders must make strategic decisions about the language or framework they want to adopt. An
important first consideration for many is selecting a web application framework like React or
Vue. Motivated by a low page response time and a good user experience, many developers
want their site to be server-side rendered.

Nuxt.js is a free and open source web application framework based on Vue.js, which, amongst
other benefits, brings server-side rendering to the Vue.js developer. In this episode I interview,
Alex Lichter, founder of Developmint and Nuxt.js maintainer. We discuss the features of Nuxt
and what role it can play in your next web application.

[INTERVIEW]

[00:00:48] KP: Alex, welcome to Software Engineering Daily.

[00:00:49] AL: Thanks for having me. Hey!

[00:00:51] KP: Where did you get started with software?

[00:00:54] AL: So I think it all started back in school actually when I was like 13 and I've had –
Like, yeah, I used computers every now. And then and it was quite fun. But then I felt like,
"Okay, I can do more than just using it. I want to like take a little peek inside how things work."
And I found out like writing small programs wasn't that tricky at first. And then I started exploring.
And I found out it's a bit trickier than I thought. But still I loved it.

[00:01:18] KP: What about first languages? Where were your early successes?

[00:01:21] AL: Ah, yeah. Well, that's a tough one. So my first language was Java actually for
quite some time, because I started with like the whole Minecraft type. And I love to play games.

© 2021 Software Engineering Daily 1

SED 1386 Transcript

So Minecraft was like the hype back then. And there were like multiplayer servers and you could
like write plugins and mods with Java. So I started learning it. And yeah, my code was super
crappy, but it was so – It made everything so cool.

So yeah, I learned Java and I kept on going. But then I found out like PHP is a bit more fun, like
less boiler plate, getting things like done quicker, and also like having the web as a platform felt
so amazing to me. Yeah, so that was PHP. And finally I still use PHP every now and then, but
now I’m mainly using JavaScript and TypeScript as languages.

[00:02:07] KP: Well, JavaScript, and I guess TypeScript as well, have been largely grown
especially in the web space around frameworks. What were some of your first exposures to
different frameworks?

[00:02:18] AL: So, yeah. Well, the first frame I actually learned was Laravel in the PHP world.
And for those of you who don't know, like the Laravel founder, Taylor Otwell, and the Vue.js
creator, Evan You, they're kind of friends I would say. Also there's like some community
friendship between the two frameworks. So it was kind of natural. Like Laravel came with like a
Vue template or like a Vue starter kit. So I tried it out. And that's where I like got like pulled into
the whole Vue universe. It felt like – Before I used, of course, like JQuery and stuff also when
like browsers hadn't their own standards very well. But that's settled down, I mean, now we
have ECMAscript and stuff. And I felt like Vue was such an amazing way to like organize code,
make things reusable. And I started using it also like not only sprinkled into a PHP application,
but finally also as the whole front-end solution.

[00:03:06] KP: So I’m sure you're familiar with other frameworks. React and Angular are two
that come to mind. What makes Vue more attractive, or at least for you?

[00:03:15] AL: So, yeah, of course, I use both of them not on a daily basis. So for me, like Vue
was easier to grasp when I had like JavaScript HTML CSS knowledge, because basically have
something called a single file component. And in there you can add like a template that is
basically HTML with a bit of Vue magic added. So you have some kind of directive where can
say render this part of HTML, or loop through this in this data. Then you have like a script tag
where you can add like your business logic, so JavaScript. And you also have a style tag for that

© 2021 Software Engineering Daily 2

SED 1386 Transcript

component where you can add like component created styles. And this is something that I kind
of missed at the other frameworks to get like this entrance barrier was quite high. Especially for
Angular, it's like very heavy. And you have to learn several concepts. And also TypeScript, which
I didn't learn before. I started with JavaScript, as I think many people.

And with React like I felt it's as mighty as Vue I would say. Also, it can be relatively lightweight.
But the good thing with Vue is that you don't have to like track your reactivity manually then like
say when the component should rerun. That Vue is doing that all under the hood with your own
like reactivity system. And that's really appealing because you don't have to deal with that at all.
You just say, "Okay, this is reactive." And whenever something based on this, say, data property
changes, then Vue is just doing it automatically under the hood.

[00:04:35] KP: And what is Nuxt.js?

[00:04:38] AL: Yeah. So Nuxt is a framework based on Vue.js. And across like my journey in
the software development world, I came across Vue and used it a bit. And when I used it as a
framework for like the whole frontend and used PHP Laravel only like as an API as a backend, I
realized that Vue is amazing with its component system, with its ecosystem, with the community,
which I really love. But at some point, just using Vue, it had some issues, especially when it
comes to SEO. Because Vue is a single page application framework. And that means that the
JavaScript is generating the HTML. So when you open a page, you don't have like the HTML
inside, but just an almost empty page with like a loading spinner. And then the browser executes
the JavaScript, and eventually renders the HTML. But that's not good for crawlers.

And I worked on a few projects that were like public-facing so SEO was much needed. And
then, well, Nuxt was more or less the optimal choice. There was even recommended in the Vue
guides, because, as I said, it's a framework on top of you and it does something called server-
side rendering, which basically means that it does everything Vue does on the browser side. It
does that already on the server-side and then sends into HTML. And then Vue takes over and
it's normal SPA again.

And yeah, besides service-side rendering, Nuxt has lots of other benefits. Like it has automatic
routing. So, as I said, I come from the PHP world. And you add an about.php file and you can

© 2021 Software Engineering Daily 3

SED 1386 Transcript

just open /about and it just works. And that kind of simplicity was always fascinating. And with
Nuxt, this is possible again. Like in Vue, you have to write a file called router.js, which says,
"Okay, this is your route. This maps through this in this component. And these are like the
placeholders and parameters." And Nuxt utilizes the file system to more or less build this
router.js file based on your files you have in your folder. So there are lots of cool features in
there. And yeah, I’m using this for almost all projects wherever I can because I feel like it's really
powerful. It's easy to get in especially because it's based on Vue. You can write prototypes
super fast. It's enterprise-ready. So basically available for almost all kinds of web projects.

[00:06:48] KP: Well, many people can say, "Oh, yes, it's enterprise-ready and there's some
benchmark." But there's a pretty good list of stuff in your gallery. Do you care to highlight a few
of the major projects that are using Nuxt?

[00:06:59] AL: So, yeah, there are lots of companies. So Nuxt has a few partners. Like we have
Storyblocks, Trappy, for example these are I would say like the common headless CMSs
nowadays. But for example, Microsoft is using Nuxt.js for its PWA builder. So there's like a side
where you can set up like a service worker for PWA. I think Adobe is using Nuxt as well. We
have even GitHub using Nuxt, for example, for the GitHub Stars website. So there are lots of
larger companies that try it out. Even NASA used it for their website for the Mouse Rover. So
lots of amazing projects. And there's also a list. Maybe we can link that in the show notes that
like highlight sites that are built with Vue and also with Nuxt. So that could be quite interesting to
see some examples from like larger and also smaller sites that dabbled with it.

[00:07:46] KP: So I know very large organizations, and for good reason, are hesitant to adopt
what they perceive as new or risky technology. They need to have long lasting stable things. Are
there any lessons learned in the journey of how to make something that's attractive to enterprise
groups for adoption?

[00:08:05] AL: So, yeah, especially as like working in open source. There's always something
you have to keep in mind. If you add a feature, especially from like external contributors, you
always have to think about that you have a cost of maintaining. So it might be a super cool
feature. But once added, you can't easily undo it. Because there are people like relying on it.
There are people maybe building something upon it and so on. So at first it's super important to

© 2021 Software Engineering Daily 4

SED 1386 Transcript

think about can we or should we add this to the core? Or could it be like a module? And I think
that's also a super important part.

Something that should be enterprise-ready is ideally modular, because that means people can
like shape the framework as they need it. Not only by like just adding things, but also hooking
into the framework, into the process, and alter some functionalities as they like, as the
requirements say, for example. So being flexible while not adding that much to the core and
keep the core lightweight I think is a quite good strategy here. Because then you can like add
more modules. You can share them. You can test them in isolation. You can reuse them. I think
that's one of the main lessons learned here.

[00:09:14] KP: So there's – I’m not sure if it's a React framework. I haven't used it myself, but
there's a system called Next.js. Is there any reference there or is this just a collision of a very
close spelling?

[00:09:26] AL: So, of course, there are references. So back then, when both Sebastian and
Alex Chopin, the original authors of Nuxt, when they came up with the idea, it was quite close
after Next.js' release. So they thought, "Okay, Next plus Vue." So the U from Vue, Nuxt, there
we go. But besides the name. Of course, like the target and the idea is kind of similar based on
the ecosystem. So of course, Next.js is a framework based on React. Nuxt.js is a framework
based on Vue. But of course, the approach totally depends on the ecosystem. So it's not that
like Nuxt is just a Next.js copy. And also the directions are a bit different depending on what kind
of features you're looking at.

But the most important part is, of course, there is always inspiration especially open source.
Like we have so many frameworks, so many static site generators, so many new projects. And if
there is a good idea like, for example, what would Gatsby and Turbolinks did with preloading
JavaScript when you like hover over a link to another site or when the site comes into the
viewport so it linked to the site. These ideas are adapted quite quick through each framework,
because if that fits in the ecosystem mindset, they will be added because it brings benefit to the
developers. Yeah, I would say that's a quite good explanation regarding the connection between
Next and Nuxt of course.

© 2021 Software Engineering Daily 5

SED 1386 Transcript

[00:10:43] KP: Yeah, definitely. Could we talk a little bit about common patterns for data
access? Let's say I’ve got that API. Maybe it's in Laravel like you were describing, or some other
language, and I’m just going to connect via REST. How easy is that to do in Nuxt?

[00:10:57] AL: So that's a good thing. Again, Nuxt is quite flexible. We have a couple of
modules. So you can, for example, pull in Axios. You can also just use the browser's fetch API,
which you also probably fill on the server so there's no problem on the server-side. If you have
like a GraphQL API, you can also use like Apollo or any other GraphQL client if you want some.
So that's the nice part. You're completely free to choose whatever data fetching library you want.
And we don't force you in any direction. Of course, we have modules ready to give you a good
head start if you say like, "Okay, what is the thing that's recommended, or it's battle proven, or
that's just common but people use?" And you can choose the module and you're good to go.

But there is nothing like – We don't have a GraphQL layer or something in place. The only thing
we have is like inside your Vue components and/or inside your page components, so the
components that are used to render the page, but also any other Vue component, you can
specify through a method called fetch what kind of data you want to pull in and want to use in
the components and maybe pass further down. So yeah, lots of flexibility. But there are also
some like common patterns like adding a repository pattern so you're not really dependent on
what data fetcher library you use when using your API.

So say in a Vue component you just say dollar api.gets, or .users.gets and then maybe an ID or
just getting all users or all posts or whatever. And then of course you build inside the repository
the whole access. So at some point when you say, "Hmm, maybe my data fetching library, we
should switch that." You don't have to like change all the code things, but just change it into
repository.

[00:12:31] KP: Do I need to know Vue as a prerequisite? Or can I come directly to Nuxt?

[00:12:35] AL: That's a good one. So I think you can start straight with Nuxt, because you can
just write Vue at the beginning. You don't have to know lots of like Nuxt internal stuff. And you
can learn that step by step. But of course if you know Vue in advance, and of course if you have
like a basic understanding of how reactivity works, that would really help.

© 2021 Software Engineering Daily 6

SED 1386 Transcript

Anyway, you can just start and say like I read the Nuxt docs. I set up a Nuxt project. And then I
take a look onto the Vue documentation and do what they do with single file components in my
Nuxt project, and it will work the same way.

[00:13:06] KP: What's the story, if anything, for state management?

[00:13:09] AL: Yeah, so state management. Generally, in Vue, we had Vuex for quite a long
time as like the main state management solution. With Vue 3 and the Composition API, there
are a couple more patterns. And there's also a good talk which I can recommend here by
Vanessa Otto, who talks about state management with like Vuex with so-called stateful
composables. So you use like the Composition API and have some global variables more or
less in the composables to keep your state. And also about, for example, Pinia, which is another
state management library by Eduardo, who also shows like how fresh pattern could look like
with the Composition API.

So TLDRs Vuex is the main solution. But you can also, as I said, use Pinia, you stateful
components. Also use XState, for example, if you want like a whole state machine, which also is
really powerful. Again, you're not bound to anything. You can use what's there and what's battle
tested. But you can also try out new things.

[00:14:07] KP: I really like the feature you were describing earlier that was sort of PHP inspired,
that I don't have to create a router and figure out routing. Just put a new file in a new directory
and it should appear there. Could you talk a little bit about what it takes behind the scenes to
make that work?

[00:14:22] AL: Absolutely. So to make the work, we have a folder called pages, which is option
on Nuxt 3 in the beta released a few days ago. But Next 2, it's mandatory. And in there, you add
the files. So you add an about a Vue for your component there and all good. Behind the scenes,
what's happening during the build step of the Nuxt application is that Nuxt looks through this
pages folder. And based on the folder structure and the naming of the files, it will understand,
"Okay, this is just a static site about a Vue." And maybe this is a folder. So /slash users, for

© 2021 Software Engineering Daily 7

SED 1386 Transcript

example, is a folder. And in there we have something called, say, _slack the view. And thanks to
this underscore, Nuxt knows, "Okay, that's a side that takes a parameter and it's called slack."

So based on the file structure, Nuxt builds behind the scenes router.js and maps it. And you can
even see like the generated router.js in the so called .next folder which contains like all the
generated files. So yeah, basically Nuxt using the file system to just do it for you and you don't
have to figure it out and to write it on your own.

[00:15:26] KP: What if I want to have something a little dynamic? Like we started out the
conversation at SEO, and I do want to get back to that. Perhaps I want some sort of slug
version of my title in the URL, but I don't want to create a page for every post. How can Nuxt
help me?

[00:15:40] AL: Yeah, we have this – As I mentioned right away, this _slack the view. And in
there you can like fetch the data based on the parameters. So you can use the parameters that,
say, like you call post/my-awesome-post, and this name, this post then can be used inside this
_slack component. And based on that, you can fetch like SEO data. And generally, we also post
data from CMs, be it a headless CMs, or be it a good old WordPress with an API, or your
custom whatever API, or just something to test it out. That all will work.

[00:16:13] KP: Makes sense. Well, yeah, having a page – And I had this experience too the first
time I started dabbling in single page apps. You create this cool thing. But if you just crawl that,
it's a script tag essentially, to a lot of crawlers. I can see where that's true broadly. Is that true of
something like the Google and the Bing crawlers, if those are the only two I care about?

[00:16:34] AL: Yeah. It's not easy to answer, because those two can understand JavaScript
nowadays. But that also means that they can potentially index your site. Still, it doesn't mean
that your site is fast, because they still have to wait until the HTML is being rendered by the
JavaScript. So it still is useful to use something like server-side rendering to like reduce the time
to interactive. To show to crawl the whole HTML to make it a bit more resilient. Because if the
JavaScript fails, you get just a white blank page and so on.

© 2021 Software Engineering Daily 8

SED 1386 Transcript

So I summarized it in my talk about SEO and Vue.js world where I said like you can use just a
plain Vue single file application if you – Or a single page application if you like that. But if you
really struggle especially like in a highly competitive space, you should use server-side
rendering or a static site generation to actually like level-up your SEO game and improve also
the core web vitals, the site performance. This all goes hand in hand.

[00:17:28] KP: do you have any rough metrics around that? Obviously, it's going to depend a lot
on implementation. But do people see a 5X? Or what's the speed up?

[00:17:36] AL: So as I said, that's tough to tell. I don't have definite numbers, because it highly
varies. The main point is that you move lots of calls. So the initial request will always go to the
server if you use like dynamic server-side rendering, say, on an ecommerce shop. And the good
part here is that you can do lots of caching on the server-side, of course. Ideally, that API call
maybe to get your product is already cached because somebody else asked for the product in
the last minute or in the last hour, whatsoever, depending on how you handle your data.

And then the time. So the time to first byte is super quick. So the time from the server outputting
HTML is ideally not or almost not influenced by that API call because it's cached and you have
the opportunity to cache it in there. And then you get the HTML. And then there's a process
called hydration, and Vue will take over and you can also optimize that a bit by saying like only
hydrate the things you can see. So if you will like take the HTML generated by the server and
then transform it into its own like virtual DOM representation so it can apply events, make things
reactive and so on. If you wouldn't apply like caching and stuff, then you mainly move the
metrics from time to interactive to like time to first byte. So you reduce the time to active, but you
increase a little bit the time to first byte because an API request on the server-side has to be
processed. We have to wait for this. So otherwise data wouldn't be there.

The good part is there are lots of opportunities to optimize. There is, as I said like, caching. You
could cache the API call. You could cache the whole response. And I think that's what the main
power is here. For static site generation, it's a whole other game, because you don't generate
the HTML on the fly all the time, but just want some build time. And then you have like almost
like zero time the first byte due to any API calls because they already happened. And I think
that's a real game changer here.

© 2021 Software Engineering Daily 9

SED 1386 Transcript

So the whole Jamstack part that also Nuxt can cover, because then you don't have any API
calls and you just get the HTML out of the box. It's just lying around on any CDN or wherever
you host your files. And that that will lead to a huge speed up. But unfortunately, numbers are
tough to provide. It depends a lot on the application. But I guess there are lots of Jamstack
statistics when like larger companies switched over the site and they said like 20X, I think,
speed up if I remember correctly. So yeah, I think also checking out Netlify's ebook about
Jamstack. They released one I think half a year or a year ago that has some compelling
numbers in there.

[00:20:03] KP: Are there any ways in which developers can extend or integrate software or do
plug-ins and things like that for Nuxt?

[00:20:10] AL: Absolutely. Yeah. So we have a full-fledged module system. So you can like add,
I would say, almost anything you like. That means like adding new page components, changing
configuration settings. And also adding Nuxt plugins so you can do that inside your application.
But you can also do that in a module. And Nuxt plugins are more or less JavaScript files that are
being executed when Nuxt starts, either on the server-side, or in the client side, or both. And
you can again do almost anything here. You have access to, say, the router. You have access
to generate the Nuxt context. So this is super common to do things like initialize tracking, for
example, like initialize Google Analytics or stuff, or also to send a heartbeat, to do like one-off
things, or to initialize recurring things. But also adding like a font loader. So there are lots of
opportunities there.

And there's also another special part of Nuxt, which is called hooks. And it's nothing – Not to be
– Yeah, you shouldn't mix it up with React Hooks. So Nuxt Hooks basically mean you have entry
points in the framework processor. So for example, during the build process, there are hooks to
say like, "Okay, whenever the build process finished, please like add another file. Or whenever
you render a site, please say strip all the JavaScript," because you only want to have HTML for
very basic site. Or whenever the generation process finished, please also generate a sitemap
based on the size you just generated, which is what the sitemap module, the Nuxt community
prides is also doing.

© 2021 Software Engineering Daily 10

SED 1386 Transcript

So yeah, lots of opportunities again. And the good part is there are many, many open source
modules also like maintained by core members, maintained by the community. I also maintain
some. And I update them for Nuxt free now. So yeah, again, you don't have to reinvent the
wheel. And that's a huge benefit.

[00:22:02] KP: The idea of generating a site map is particularly interesting to me. How does a
plug-in like that get socialized once the developers build it?

[00:22:11] AL: So there are a couple of options. At first, if the developer already built a couple of
modules, then there is this Nuxt community organization. And you can pull, I would say, almost
any substantial module in there, which means like, again, had the CMs integrations. Things that
people need like this item module. We also have the Composition API module in there for like
Nuxt 2 to add a Composition API from V3 to V2 and so on so on. So whatever you can do, you
can just ask if the module you wrote can be added there. Then of course we take a look. We
see, "Okay, it's not like just – I don't know, one liner or something, or malicious." And then you
can add it there.

There's also a site called modules.nuxtjs.org, which lists all these modules. So you can also
take a look there and search for like a category, search for username and so on. And yeah,
eventually there's also a Nuxt newsletter where also modules are being shown. And we also
have a Discord where people regularly post cool findings like, again, modules, also websites.

[00:23:11] KP: Are there any common adoption patterns? I don't know, like industries or types
of sites that people say, "Oh, yeah. Nuxt is the right framework for me."

[00:23:20] AL: I think I would ask the question differently. I would ask like is there something
you cannot do with Nuxt? And I think the good answer to this is, yes, definitely. So if you have a
site that's rendered through like PHP or Python, like a traditionally server-side rendered site,
then you can't use Nuxt. Because next is the only solution for like the your full like frontend part.
You can't just say add Nuxt on top of Laravel or something. You either go like full Nuxt or no
Nuxt at all.

© 2021 Software Engineering Daily 11

SED 1386 Transcript

For example, for Vue, you can just sprinkle it in, as I also did before in my journey like, I don't
know, five or so years ago. But yeah, with Nuxt, that won't work. For everything else, it's fine.
You can build classic single page applications. You can build static sites. You can build dynamic,
highly dynamic sites. And soon we also have like incremental static regeneration, so ISR. That's
also something planned also for Nuxt 3. And yeah, I would say sky is the limit.

[00:24:15] KP: I think you'd mentioned a recent major release. Are there any key features you
want to highlight that were recently included?

[00:24:23] AL: Yeah. Right. Nuxt 3 three finally added a beta. So it's not production-ready.
That's the first thing I really want to say. We're still working on like a module support, of course,
because the core is in beta now. But several modules have to catch up. There are a couple of
cool features. At first, Nuxt 3 is finally supporting Vue 3. So the latest major version of Vue. That
also means Composition API being supported out of the box. Also with Nuxt composables. So
all the Nuxt methods. You had Nuxt 2, but also as composables for the Composition API.

Now, next has like native TypeScript support in terms of it is fully built with TypeScript and ESM.
And I think one of the coolest features people also really wanted is there is a Vite integration. So
we have extremely fast dev server and using like Vite as a dev server and rollup expander. So
that will really step up the developer experience. You can also switch to Webpack 5 if you want
to. So we also support that. But yeah, I think these are like many features I want to highlight.

And I think one more tiny thing is that there is a new server engine for Nuxt called Nuxt Nitro,
and that one allows us to run on almost any platform. Be it like a service worker or like a
Cloudflare networker, or a Netlify edge handler, it's called a thing. It's running on serverless. It's
running on just the basic VPS. You name it.

[00:25:45] KP: Wait. That's really interesting. So like Lambda functions, cloud functions
deployed there as well?

[00:25:50] AL: Yeah, that works. That works. So I tested Nitro a lot when it was like just in baby
steps, I would say. And you basically have a preset for like just having a Node.js server, presets
for having a Lambda, presets for having a worker. So not even a Node environment, but just the

© 2021 Software Engineering Daily 12

SED 1386 Transcript

V8 isolate as Cloudflare is doing that. And they're like deployments out of the box for, yeah, as I
said, Cloudflare, for Vercel, for Netlify. But not only static side, but also as dynamic serverless
server-side rendering build. Also Azure functions, Firebase and so on so on.

[00:26:22] KP: So Cloudflare in particular is interesting because they're a globally distributed
CDN. All about speed and response time. That coupled with the Nuxt thesis of server-side
rendering and all that to begin with seems like there's a real key optimization there. Am I on the
right path with fast speed for delivery?

[00:26:41] AL: Absolutely. So, generally, like I would say edge rendering. What's happening in
Cloudflare workers is I would say like the next level of serverless. Because now you can just
render it super close to customer or to the user. And that means, of course, less latency and
more speed. Plus, of course, with Nuxt running there, yeah, you have the best performance you
can think of.

[00:27:01] KP: So getting something to deploy in all these places. So the same code can
basically run on a Cloudflare worker or on AWS Lambda, but there's subtle differences. They're
not the same thing exactly. How do you tie all of these not the same connections together into
one seamless interface?

[00:27:19] AL: Yeah. It isn't as easy. Because under the hood, Nitro is doing lots of work there.
For example, as I mentioned before, in Cloudflare, you don't have like a full node environment.
So you don't have something – Like you don't have access to a file system. You don't have
access to lots of node-specific functionalities. So either have to polyfill them more or less if you
can. Or if you don't need them, you have to like mock them out. And this is also what's
happening. And the good thing is, again, all of this is open source. So Nitro and all underlying
packages that do like tiny parts of that are open source. So you can see how all of this works.

And I have to give credits here to Puya and Daniel who mainly work on the Nitro engine. As I
said, I tested it and added a few bug fixes here and there. But I’m not the main maintainer here.
And they really did a great job. So everything ties together. Everything works great. And again,
there are more and more deployment presets coming. And the good part is, as you mentioned,
the same code will run wherever, because there is a quite high abstraction level when you write

© 2021 Software Engineering Daily 13

SED 1386 Transcript

this code in a Vue single file component, because that Vue single file component, maybe with a
bit of Nuxt features used, it will be transformed into JavaScript through the Vue compiler during
the build step. And then this JavaScript, of course, can be transformed further to make it work
on V8, isolate in Cloudflare worker.

[00:28:39] KP: What's the Composition API?

[00:28:42] AL: So the Composition API came with Vue 3 and was also backported to Vue 2,
and it is a new way of writing Vue components, I would say, or like Vue logic. So before we had
the Options API where you had like a script tag and then you had just a default export. And you
had data. And in there, there was a function that returned like your data. Then you had
computed, which was an object that held all your computer properties. So like your reactive
parts that React always when, for example, something and your data changed. And you had an
option for methods. And you had an option for – Say, you have a function called mounted for
mounted lifecycle hook. Yeah, that was the Options API.

And the Composition API had been created because there were a few flaws within Options API.
It is super beginner-friendly, but you have one big problem, which is sharing logic. So
sometimes you want to share parts of logic between your components, because they're quite
similar. And there aren't many options to do this in the Options API. One of them are mixins. But
mixins are hard to grasp because it's tough to understand where the actual logic comes from.
And it could lead to naming clash and so on.

And also, one other thing of the Options API was you had always a disc call. So, for example, in
the method, you want to access one of the data properties in Vue. You had to write, say,
disc.user. And disc was especially problematic for TypeScript support. And also for like
understanding and getting behind the, yeah, Vue magic, how some people would call that. And
that's why the Composition API had been created and now you only had one setup function.
And in the setup function, you were able to define all these things you had in your Options
before, but without this strict categorization. Now you are able to like group things by feature. So
if you have like a feature to fetch a repository, then you can group that together and don't have
like a method here and a data there, and a query property here. You all have that in one block.
And the good part is, again, if you want to share it now, you can just extract it into a single

© 2021 Software Engineering Daily 14

SED 1386 Transcript

JavaScript function, because now there's no like disc anymore. Not that much magic. It's more
explicit. And you can share it easily because there's almost just JavaScript. You can move it into
a function and then just import it and use it inside the setup function of one two, three
components and it will just work.

So this is also, I would say, kind of inspired by, on the one hand, like React Hooks. On the one
hand, I think also Svelte was an inspiration there. But yeah, don't judge me if that was wrong.
But the good part is that I think it's still quite understandable. It's a bit more explicit. But it's super
helpful. And, personally, I use the Composition API whenever I can because I love that style of
writing code.

[00:31:27] KP: Can you share some details about your role as the Nuxt.js maintainer? What's
demanded of you in that?

[00:31:33] AL: Absolutely. So maybe I can start with, again, a small history part.

[00:31:38] KP: Sure.

[00:31:39] AL: So when I discovered Nuxt because of the SEO demands and so on, I used it,
and it was I think close to version two point something. So like half a year before the release
there. So I used Nuxt 1. And I was already fascinated, but then I realized some things were not
there because, of course, it wasn't that mature in terms of the ecosystem. So I thought, "Okay,
maybe let's take a look." Oh, there was an example typo. Okay just send in a pull request. I was
kind of familiar with open source due to like Laravel before. So I just did that. And like my
changes were very happy, well-received I would say. So I looked into more things and then I
found out, "Okay, for one of my projects, I had to add a functionality to add an RSS feed to my
Nuxt application." And I took a look and I understood how modules worked. And I wrote my kind
of first module, which just added that feed. And then I realized, "Okay, if I needed functionality,
maybe there are more people out there that maybe need it too. So I decided to open source the
module.

And then of course I was in touch with the people. I moved it to the Nuxt community
organization. And then I talked to the core maintainers back then. They were, as I said

© 2021 Software Engineering Daily 15

SED 1386 Transcript

Sebastian, and Puya, and Clark. And they were super happy. And then I was, yeah – I read
through more and more modules and also the core. And then I started contributing more and
more things that I thought might be helpful. And some of them were and some weren't of
course. I think that's novel. So yeah, more and more changes were in there, and that was like
summer 2018. And then there was the Vue.js London Conference in September. And then
Sebastian was like, "Yeah, there's this conference. Do you want to join us?" And I was like,
"Yeah, sure." So I booked a flight in the hotel. And they said, "Yeah, the ticket isn't the problem.
You can be our guest." And I was like, "Oh, wow! Crazy."

So I went to Ireland before, like a few weeks before to start the internship there for half a year.
Then I had to ask for like a vacation, but it wasn't a big deal, and I moved over to London, and I
met the other maintainers. So to say, Sebastian and Alex, the first time in real life. And they said,
"Yeah, welcome. Thanks for your contributions." So yeah, this is how all the things started.

[00:33:48] KP: Very cool.

[00:33:49] AL: But what's demanded? I thought that it's still interesting. So right now the
organization, or like my part is quite loose I would say, because now everything evolved further.
I mean, like a few years in the future now. There's a company behind Nuxt now which is called
Nuxt Labs and most full-time maintainers. So, again, Puya, Daniel, and also Sebastian, and
Alex, they're part of the company. I am not. So I am part of like the community maintainers. That
means I don't have that many duties or that I have to do things. But still, I contribute to the core.
I try to update my modules. There are meetings every two weeks that I take part of to hear
about the latest news and give feedback. And also, of course, I’m in touch with the other
maintainers about like problems, experiences. And I contribute whenever I think I can add
something meaningful.

[00:34:39] KP: Well, in addition to that, I assume you're pretty busy over at Developmint. Tell
me a little bit about what Developmint does.

[00:34:47] AL: Okay. Again, this all started six years ago now when we – So we started with
three friends that's just got our A levels, and it was just a funny coincidence that someone asked
if we could build a website for them. And I said, "Yeah, we can pay you, but you need a

© 2021 Software Engineering Daily 16

SED 1386 Transcript

company." So we founded that company. And we started with just basic projects for small-
medium enterprises, so like websites, in-house tools and so on. But especially then when I
looked more and more into Nuxt, people asked me if I was able to help them. And I was happy
to help them, of course, in my free time, whenever I had time. Say, for example, through the
Discord and sometimes also like, "Oh, yeah. There's my application. That's the problem." Like
typical like issue triaging, bug reports and stuff.

But sometimes I was like, "Okay, this is super deep and I can't spend a lot of time or free time to
look into like projects." And they were like, "Okay. Well, I can pay you." And this happened more
and more. And then I thought, "Okay, maybe this could be a good branch for development." So I
decided to take the opportunity. And we moved more and more into consulting. And yeah, now
that's basically the main part, web development consulting with focus on Vue and Nuxt.js. So
basically that means the clients that I have, they asked me, for example, for code reviews for
doing peer programming for like discussing architectures and how to build things on a very
abstract level. Or also about how to integrate several like libraries, third-party components and
so on.

[00:36:14] KP: Do you have any advice for developers interested in taking a similar path?

[00:36:19] AL: Yeah, I do actually. So the first thing is like find a project that you're passionate
about that you use personally for a project. And then just take a look and get in touch with the
people. And especially if you don't know much about open source, just ask for help. People are
super friendly. The open source community is great. And yeah, start with tiny tasks and work
your way towards more knowledge and trying out things. Because, basically, everything I did
was like I was very passionate. I still am about Nuxt. I took a look into the project and I saw
where I could maybe add things, or improve the project, or help out. And yeah, that's why I’m
actually here.

[00:36:56] KP: Alex, where can people keep up with you online?

[00:37:00] AL: So I think the best way is Twitter actuall. Sso I have a Twitter handle, it's
@thealexlichter, so the Alex Lichter. I also have a blog which isn't that up to date anymore
because, yeah, I don't have that much time recently to post. But I promise, I will post a new

© 2021 Software Engineering Daily 17

SED 1386 Transcript

thing this year, at lichter.io or at nuxt.xyz. I think that's easier. Yeah, and I think that's it. That are
the best ways to reach me.

[00:37:27] KP: Well, Alex, thanks for coming on Software Engineering Daily.

[00:37:30] AL: Thanks for having me. And yeah, I hope you have a great day.

[END]

© 2021 Software Engineering Daily 18

